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a dose- and time-dependent increase in the SCs, with the 
p-p38/p38 MAPK ratio also increasing in testes and SCs 
after PFOA exposure. Moreover, PFOA altered expressions 
of claudin-11, connexin-43, TNFα, and p-p38 MAPK were 
recovered 48 h after PFOA removal in the SCs. The SCs 
appeared to be target to PFOA, and the disruption of the 
BTB may be crucial to PFOA-induced reproductive dys-
function in mice.

Keywords Perfluorooctanoic acid · Male infertility · p38 
MAPK inhibitor · JNK · Transforming growth factor β3

Introduction

Perfluorooctanoic acid (PFOA) and other perfluoroalkyl 
substances (PFASs) are man-made chemicals, which have 
been produced and used in commercial products and indus-
trial processes for over 60 years (Lindstrom et al. 2011). 
These chemicals are widely used as surfactants in textile, 
paints, waxes, polishes, electronics, adhesives, and food 
packaging due to their unique properties and strong hydro-
phobic and oleophobic carbon–fluorine bonds (Pico et al. 
2011). These substances are highly persistent and ubiqui-
tously found in the environment of global air, water, soil, 
wildlife pollutants, and even found in remote polar areas 
(Castiglioni et al. 2014). Unlike most other persistent and 
bioaccumulative organic toxicants, PFOA is water-soluble 
and does not bind well to soil, allowing for easy trans-
portation through and contamination of human drinking 
water. PFOA has an exceedingly long half-life in humans 
and male rodents, posing harmful effects due to accumu-
lation in organs (Hundley et al. 2006). Consistent median 
PFOA serum levels of 2–8 ng/ml have been found in vari-
ous industrial countries around the world (Vestergren and 
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Cousins 2009). Serum levels in communities with high 
environmental PFOA levels are much higher, with median 
levels of 28.2 ng/ml reported from 70,000 individu-
als in Ohio and West Virginia compared to about 4 ng/ml 
in the general population due to contaminated drinking 
water (Steenland et al. 2009). The maximum serum level 
(114,100 ng/ml) reported thus far was in a worker exposed 
to air with high concentrations of PFOA (Olsen et al. 2000).

Exposure to PFOA can cause tumor and nontumor effects 
on the immune and nervous systems and adversely affect 
hepatic function, reproduction, and development (Post et al. 
2012; Shi et al. 2013; Yan et al. 2014). Research has demon-
strated that maternal PFOA concentrations are significantly 
inversely associated with birth weight, birth length, and 
abdominal circumference of their offspring (Fei et al. 2007, 
2008), with a negative relationship also found between tes-
tosterone level and serum perfluorooctane sulfonate (PFOS) 
in 247 healthy men (Joensen et al. 2014). Epidemiological 
studies have further attempted to characterize human PFOA 
exposure and determine potential correlations between inter-
nal PFOA levels and reproductive and developmental out-
comes in adults and children (White et al. 2011). Little is 
known, however, about the mechanisms of these correlations 
and the modes of PFOA activity on mammal reproduction.

The blood–testis barrier (BTB) is one of the tightest 
blood–tissue barriers and physically divides the seminifer-
ous epithelium into basal and apical compartments, which 
is crucial to male fertility and where different stages of 
germinal cell development occur (Saunders 2003). Sertoli 
cells (SCs) nurse steps of developing germinal cells and 
form the BTB between opposing SCs and adjacent Sertoli-
germ cells (Liu et al. 2012; Gunzel and Yu 2013; Runkle 
and Mu 2013). The BTB prevents exogenous substrates 
from entering apical compartments and creates an immuno-
logical barrier that sequesters post-mitotic antigens (Stein-
berger and Klinefelter 1993; Siu et al. 2009). The BTB 
periodically reconstructs to facilitate spermiogenesis and 
spermiation during the epithelial cycle, which is promoted 
by cytokines and chemicals (He et al. 2009; Alves et al. 
2013). Among these cytokines, tumor necrosis factor α 
(TNFα) and transforming growth factor β3 (TGFβ3) act as 
signal factors to modulate junction restructuring and regu-
late diverse cellular processes pertinent to spermatogenesis 
by binding to their receptors, which are mostly confined 
to the SCs in testes (Xia et al. 2005, 2009; Li et al. 2006). 
Mitogen-activated protein kinase (MAPK) signals are 
reportedly downstream of TNFα and TGFβ3 and are acti-
vated in the process of the BTB reconstruction (Lie et al. 
2013). Studies on PFOA reproductive toxicity have mainly 
focused on disrupting the Leydig cell function of sterol 
hormone synthesis; however, the effect of PFOA on BTB 
integrity remains unknown. In this study, BABL/c mice and 
primary SCs were used as a toxicological model for PFOA 

exposure. The BTB integrity and associated protein expres-
sions were assessed. In addition, TNFα, TGFβ3, and down-
stream MAPK signaling pathways were also explored.

Materials and methods

Mice and PFOA treatment

BABL/c male mice (6 to 8 weeks old, 20–27 g in weight) 
were housed in a temperature (23 ± 1 °C)- and humidity 
(60 ± 5 %)-controlled room at a constant 12-/12-h light/
dark cycle. All procedures were performed in accordance 
with the Ethics Committee of the Institute of Zoology, Chi-
nese Academy of Sciences. After 1 week of adaptation, 
80 mice were randomly divided into four groups of equal 
size and dosed by oral gavage with either vehicle (Milli-
Q water) or 1.25, 5, or 20 mg/kg/d PFOA (dissolved in 
Milli-Q water) for 28 consecutive days. After treatment, all 
mice and testes were sampled for analysis. The right tes-
tes of three mice were fixed in 4 % paraformaldehyde for 
immunofluorescence microscopy, while the remaining tes-
tes were immediately frozen in liquid nitrogen and stored at 
−80 °C for later analysis.

Breeding experiment

To obtain credible data, we reduced the experiment to the 
control group and the 5 mg/kg/d group for the breeding 
experiment. Male mice (6 to 8 weeks old, BABL/c; 15 for 
each group) mated with virgin females (8 to 10 weeks old, 
ICR mice) at the rate of 1:3 (45 female mice for each group, 
90 female mice in total) after 28-day treatment. Male and 
female mice cohabitated at night and were separated dur-
ing the day. Successful mating was indicated by finding 
a vaginal plug in the morning, with pregnant mice caged 
alone till parturition. Vaginal plug examine was conducted 
for 5 days, female mice without a vaginal plug were con-
sidered to have no mating behavior. Plugged females and 
pregnant females per male mice were counted, and average 
litter size and birth litter weight were later calculated.

In vivo BTB integrity assay

The integrity of the BTB assay was performed using a biotin 
tracer, as described previously (Meng et al. 2005). In short, 
after 28-day treatment, three mice from each group were anes-
thetized and their testes exposed. The interstitium testes were 
injected with 50 μl EZ-Link Sulfo-NHS-LC-Biotin (10 mg/
ml freshly dissolved in physiological saline containing 1 mM 
CaCl2, Pierce-Invitrogen Carlsbad, CA). After 30 min, the 
animals was euthanized, and their testes were embedded in 
Tissue-Tek OCT (Sakura Finetek, Japan) in preparation for 
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cryosection. The sections (10 μm) were fixed in 4 % para-
formaldehyde (PFA) for 20 min, washed with phosphate-buff-
ered saline with 0.1 % Tween 20 (PBST), blocked in 0.01 M 
phosphate buffer solution (PBS) containing 15 % goat serum 
and 1 % bovine serum albumin (BSA, wt/vol), and incubated 
with Alexa Fluor® 568-conjugated streptavidin (Life-Invitro-
gen, Carlsbad, CA) for 2 h at room temperature. After mount-
ing with mounting medium (Sigma-Aldrich, St Louis, MO), 
the sections were analyzed by fluorescence microscopy.

Sertoli cell isolation and treatment

With slight modifications made in the protocol, primary 
SCs were isolated from 14-day or 6- to 8-week-old BABL/c 
male mice that have not undergone any treatment accord-
ing to the methods from previous studies (Feng et al. 2010), 
and the isolated SCs from 14-day-old male mice were used 
to measure transepithelial electrical resistance (TER). Mice 
were euthanized by CO2 asphyxiation, and testes were imme-
diately removed and placed in ice-cold PBS (pH 7.4) con-
taining 200 IU/ml of penicillin and 200 g/ml of streptomy-
cin (Invitrogen, Carlsbad, CA) and washed three times. Five 
testes were decapsulated once, and the seminiferous tubules 
were squeezed into 5 ml 0.1 % collagenase IV (17104-019, 
Gibco-Invitrogen, Carlsbad, CA) in 2.5-mm culture dishes 
(BD Biosciences, San Diego, CA). After 15-min incubation 
at 37 °C with occasional gentle shaking, loose tubules were 
washed three times with 0.15 M PBS, further digested with 
0.1 % collagenase IV and 0.1 % hyaluronidase type I–S 
(H3506, Sigma-Aldrich, St Louis, MO) at 37 °C for 20 min, 
followed by continued digestion with 0.1 % DNase I (D5024, 
Sigma-Aldrich, St Louis, MO) and 0.25 % trypsin (Invitro-
gen, Carlsbad, CA) for 30 min at 37 °C with gentle shaking. 
Digestion was terminated by fetal bovine serum (FBS, Gibco, 
Grand Island, NY) and washing with PBS three times. The 
SCs were incubated in a CO2 incubator at 35 °C in a humidi-
fied atmosphere with 95 % air/5 % CO2, with the medium 
replaced daily. After 48 h, SC cultures were subjected to 
hypotonic solution (20 mM Tris, pH 7.4) for 3 min to remove 
germ cells. On day 3, SCs were exposed to PFOA.

Isolated SCs were seeded at 1.8 × 106 cells/cm2 on 
Matrigel-coated plates (BD Biosciences, San Diego, CA) 
in serum-free Ham’s F12 nutrient mixture and Dulbecco 
modified eagle medium (DMEM/F12) with 10 % FBS 
(Gibco-Invitrogen, Carlsbad, CA) on day 0 and exposed 
to 0, 300, 400, and 500 μM PFOA for 48 h from day 3. 
To perform cell viability assay, SCs were exposed to 0 to 
700 μM PFOA for 48 h. To perform dynamic expression 
of cytokines analysis, SCs were subject to 0 (control) or 
400 μM PFOA and terminated at 0, 3, 6, 12, 24, and 48 h 
after exposure. To study the recovery of cytokine expres-
sion, 0- and 400-μM PFOA-treated cells were washed and 
replenished with fresh DMEM/F12 medium. These cell 
cultures were terminated at 0, 3, 6, 12, 24, and 48 h.

In vitro BTB integrity assay

In vitro BTB integrity was assessed by measuring tran-
sepithelial electrical resistance with a Millicell ERS system 
(Millipore Corp., Bedford, MA) as described previously 
(Mruk and Cheng 2011). Briefly, SCs were isolated from 
14-day-old BABL/c mice and seeded on Matrigel-coated 
Millicell bicameral units (Millipore Corp., Bedford, MA) 
at a density of 1 × 106 cells/cm2. The SCs were maintained 
as a compact monolayer to mimic the BTB in vitro. PFOA 
(0, 300, 400, and 500 μM) was added to cells on day 4. 
After 24 h, the TER was detected in each unit at four differ-
ent areas (12-, 3-, 6-, and 9-o’clock positions), which were 
averaged into a single value and presented as “R.” Three 
wells in each group were detected. The blank control was 
conducted in the unit without SCs. The true TER value 
of each sample was calculated as: TERsample (Ω cm2) =  
(Rsample − Rblank) (Ω) × Effective Membrane Area (cm2).

Cytokines TNFα and TGFβ3 levels

Testes homogenates in 0.01 M PBS (control, 1.25, 5, and 
20 mg/kg/day groups) were used to detect TNFα and 
TGFβ3. In vitro, both SCs protein lysates and spent media 
were subjected to cytokines detection. Enzyme-linked 

Table 1  Reproductive data of PFOA-treated males mate with ICR females

Males (6 to 8 weeks old, BABL/c) orally administered vehicle or 5 mg/kg/day PFOA for 28 days were mated with three virgin females (8 to 
10 weeks old, ICR) at night and housed separately during the day. Successful mating was indicated by a vaginal plug in 5 days. Results are pre-
sented as mean ± SE

** P < 0.01, Mann–Whitney U test of plugged and pregnant females
$ P < 0.05, Student’s t test of litter weight

Male Female  
number

Mated females  
(per male)

Pregnant females  
(per male)

Average litter  
size (pups/litters)

Average litter 
weight (g)

Group Number

Control 15 45 2.67 ± 0.16 1.80 ± 0.20 11.89 ± 0.54 19.95 ± 0.80

PFOA 15 45 1.47 ± 0.27** 0.7 ± 0.28** 10.27 ± 0.72 16.17 ± 1.63$
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immunosorbent assay (ELISA) kits for tissue TNFα and 
TGFβ3 were purchased from Lichen Commercial and Trade 
Co., Ltd. (Shanghai, China). The minimum detectable con-
centration was less than 1.0 pg/ml, and the coefficient of 
variation between plates was less than 15 %. The proce-
dures were performed according to the kit instructions. All 
data of both testes and SC lysates were normalized to total 
protein concentrations in corresponding lysates, and data of 
spent media were normalized to corresponding SC lysates 
protein concentration, which were detected using BCA pro-
tein assay kits (Beyotime Biotechnology, Zhejiang, China).

Western blot analysis

Preparation of the protein extracts from the testes and pri-
mary SCs, and Western blot analysis were performed as 
described previously (Feng et al. 2009, 2010). Phospho-
rylation protein extracts were prepared by RIPA buffer and 
supplemented with protease inhibitor (PMSF) and protein 
phosphatase inhibitors (Applygen Technologies, Beijing, 
China). N-cadherin, β-catenin, occludin, claudin-11, con-
nexin-43, p-p38 (T180/Y182), p38, p-JNK (T183/Y185), 
JNK, p-ERK (T202/Y204), and ERK primary antibod-
ies were used. All antibodies used were obtained com-
mercially, and their sources and dilutions used for dif-
ferent experiments are listed in SI Table 1. The protein 
bands were visualized by enhanced chemiluminescence 

(superECL, Tigen, Beijing, China) on X-ray films and 
analyzed with Quantity One software (version 4.6.3, Bio-
Rad). Data were normalized to protein expression levels 
of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 
and the control data were set as 1. Results were presented 
as mean ± SE for each group of at least three individual 
samples.

Immunofluorescence microscopy

Deparaffinized testis sections (5 µm) and harvested SCs, 
which were fixed in 4 % paraformaldehyde and penetrated 
in 0.5 % Triton-100, were incubated in a blocking solution 
(0.01 M PBS containing 10 % normal goat serum and 5 % 
BSA) for 30 min; then incubated in occludin, claudin-11, 
and connexin-43 or WT1 antibodies at 4 °C overnight in 
a moist chamber; and finally washed three times with 
0.01 M PBS. The slides were incubated in goat anti-rabbit 
IgG Alexa Fluor 488 or 594 (ZSGB-BIO, Beijing, China) 
at 37 °C for 1 h, washed three times with 0.01 M PBS, 
and mounted with Vectashield Mounting medium with 
4′,6′-diamidino-2-phenylindole (DAPI, ZSGB-BIO, Bei-
jing, China). Fluorescence images were captured using a 
Nikon DS-Ris digital camera interface to Nikon Eclipse 90i 
Fluorescence Microscope at 12.5 Megapixel (Mpx) with 
Nikon NIS Elements Advanced Research Imaging software 
(version 3.2) (Nikon Instruments Inc., Japan). Images were 
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Fig. 1  PFOA disrupts BTB integrity in adult mice. a In vivo BTB 
integrity assay. Testes were injected with 50 μl EZ-Link Sulfo-NHS-
LC-Biotin (red) in the interstitium testes, and cell nuclei were dyed 
by 4′-6-diamidino-2-phenylindole (DPAI, blue). b Western blot anal-
ysis of IgG level in testes. Testis extracts were prepared and labeled 

by anti-mouse IgG-HPR, and IgG was visualized by chemilumines-
cence. c Band densities of Western blot result in (b). GAPDH served 
as a loading control. Results are presented as mean ± SE (n = 3), 
*P < 0.05; **P < 0.01 (color figure online)
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exported to TIFF format and analyzed in Photoshop using 
Adobe Creative Suite (version CS6).

Statistical analysis

Comparisons between groups were performed using one-
way analysis of variance (ANOVA), followed by Tukey’s 
honestly significant difference test, or using the independ-
ent samples t test using SPSS software (version 18, SPSS, 
Inc., Chicago, IL). The plugged females and pregnant 
females between control and treatment were compared 
using the Mann–Whitney U nonparametric test (SPSS, ver-
sion 18 software). All data are presented as mean ± SE. 
Probability levels of P < 0.05 were considered significant.

Results

PFOA impaired male mice fertility

Male fertility was tested through mating virgin females 
with similar weight (23–31 g) after 28 days of either no 

treatment or PFOA (5 mg/kg/day) treatment. Our pre-
vious study has shown that no significant testis weight 
loss was found in 5 mg/kg/day PFOA mice (Zhang et al. 
2014). Herein, 28 days of consecutive gavage of 5 mg/
kg/day PFOA led to a decrease in the number of mated 
and pregnant females per male mouse compared to that 
in the control group. Although significant changes in 
average litter size were not observed, litter weight was 
shown to be significantly reduced after PFOA exposure 
(Table 1).

PFOA disrupted the BTB and caused immune privilege 
in mouse testes

The integrated BTB structure is related to male fertility. We 
explored the effect of PFOA on the BTB integrity. In nor-
mal testes, junctions between the Sertoli–Sertoli and Ser-
toli–spermatid interfaces formed tight barriers that prevent 
large molecules from passing through (control, Fig. 1a). 
However, the BTB barrier was opened after 28-day treat-
ment with 1.25 and 5 mg/kg/d PFOA. Red fluorescent dye 
injected in the interstitium testes diffused dose-dependently 
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Fig. 2  PFOA disrupts SCs junction barrier. a Immunofluorescence 
staining of WT1 in SCs. Harvested SCs were fixed to coverslips by 
4 % paraformaldehyde, penetrated, and stained by WT1 antibody. 
WT1 (red)-positive cells are SCs, and cells stained blue fluorescence 
were counted to total cell number. b Cytotoxicity of PFOA on pri-
mary SCs. Primary SCs at 1.8 × 106 cells/cm2 cultured for 3 days 
on Matrigel-coated plates were treated without or with PFOA (100, 
200, 300, 400, 500, 600, and 700 μM) for 48 h. MTT assay was used, 
and absorbance at 490 nm was recorded to measure cell viability of 

PFOA-treated SCs. c Transepithelial electrical resistance (TER) in 
SCs. Integrity of SCs junction was measured by TER. Primary SCs 
derived from 14-day-old BABL/c mice were cultured at 1 × 106 
cells/cm2. PFOA (0, 300, 400, and 500 μM) was added to the cells 
at day 4. The TER values were measured following the Millicell ERS 
system instructions (n = 3). The true TER value of each sample was 
calculated as: TER sample (Ω cm2) = (Rsample − Rblank) (Ω) × Effective 
Membrane Area (cm2). *P < 0.05; **P < 0.01; ***P < 0.001 (color 
figure online)
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in the BTB and appeared in the adluminal compartment 
(Fig. 1a). Additionally, PFOA induced damage of the BTB, 
which helps maintain tolerance to germ cell antigens, and 
this may have facilitated immune privilege, as evidenced 
by the higher IgG levels of testicular protein in the PFOA-
treated mice (Fig. 1b).

PFOA disrupted the SCs junction barrier in vitro

To further study the effects of PFOA on the BTB, isolated 
primary SCs were treated with PFOA. The purity of the 
SCs was more than 98 % and was identified using WT1 
staining. These cell cultures were considered appropriate 
for use in the following experiments (Fig. 2a). Cell viabil-
ity was assessed following 48 h of PFOA treatment, and 
the IC50 was over 500 μM for the SCs (Fig. 2b). 400-μM 

PFOA exposure resulted in a disruption of the SCs junction 
barrier, as manifested by decreased TER without detective 
decrease cell viability. Below the IC50, the TER decrease in 
500-μM PFOA groups may have been due to the damag-
ing effect of PFOA on the SCs junction barrier or on cell 
viability (Fig. 2c).

PFOA perturbed BTB protein expression in vivo  
and in vitro

The integrity of the BTB is based on various junction pro-
teins that form coexisting tight junctions (TJs), ectoplasmic 
specializations (basal ESs), and gap junctions (GJs). After 
28-day PFOA gavage, the following proteins were down-
regulated: (1) TJ integral membrane proteins: occludin and 
claudin-11 (Fig. 3a); (2) basal ES proteins: N-cadherin and 
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Fig. 3  Changes in BTB-associated proteins induced by PFOA in 
testes. a Immunofluorescence analysis of BTB-associated proteins. 
Fluorescent micrographs using cross sections of deparaffinized testes 
from mice received vehicle control and doses of PFOA (0, 1.25, 5, 
and 20 mg/kg/day) for 28 day. Green fluorescence represents clau-
din-11, occludin, and connexin-43, and DAPI stained for nuclei. b 

Western blot analysis of N-cadherin and β-catenin in mouse testes. 
Testis lysates (20 μg/well) were loaded onto gel and reacted with 
primary and later secondary antibodies; GAPDH was set as loading 
control. The down panel is a densitometrically scanned histogram 
of protein bands, and the control was arbitrarily set as 1 with n = 3, 
*P < 0.05; **P < 0.01 (color figure online)
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β-catenin (only in the 20 mg/kg/day group, Fig. 3b); and 
(3) GJ integral membrane proteins: connexin-43 (Fig. 3a). 
Taken together, PFOA was found to suppress BTB protein 
expression in the testes.

Similar to the in vivo study, connexin-43 expression was 
significantly down-regulated by PFOA in a dose-dependent 
manner. The expression levels of other junction proteins 
also decreased, including occludin and claudin-11. Fur-
thermore, the level of β-catenin did not change, and N-cad-
herin levels in the SCs increased after PFOA treatment 
(Fig. 4a–f).

PFOA induced high TNFα content in vivo and in vitro

TNFα content in adult mouse testes was increased after 1.25- 
and 5-mg/kg/d PFOA treatment for 28 days. These effects 
were in a dose-dependent manner (Fig. 5a). However, tes-
ticular TGFβ3 expression was not affected (Fig. S1).

In primary SCs, the TNFα levels were elevated in a dose-
dependent manner both in SCs and in spent media when 
cells were treated with PFOA for 48 h and were significant 
in the 300- and 400-μM PFOA groups (Fig. 5b). Moreo-
ver, TNFα also exhibited a time-dependent increase in the 
SCs exposed to 400 μM PFOA and started to increase at 
the 12-h point after PFOA exposure (Fig. 5c). Similar dose-
dependent trends were observed for TGFβ3; however, these 
elevations appeared to decline after 12 h of exposure in the 
400-μM PFOA group (Fig. S2).

PFOA activated p38 MAPK signaling in vivo and in vitro

The downstream MAPK signaling pathways of TNFα 
and TGFβ3 were assessed by Western blot analysis. The 
p-p38 MAPK/p38 MAPK ratio showed a dose-dependent 
increase in the testes after PFOA administration and was 
significant in the 20-mg/kg/d PFOA group compared to that 
of the control. The p-p38 MAPK content was high in 1.25- 
and 5-mg/kg/day groups, though p38 MAPK, p-JNK, JNK, 
p-ERK, and ERK did not significantly change (Fig. 6a–c).

Similarly, two pathways (p-p38/p38 MAPK and p-JNK/
JNK) were involved in the 500-μM PFOA-induced junc-
tion damage in SCs, though only p-p38/p38 MAPK in the 
400-μM PFOA-treated cells. It is worth noting that the 
p38 MAPK signaling pathway was sharply stimulated as 
manifested by the fourfold increase in p-p38 MAPK and 
twofold reduction in p38 in the 400-μM and/or 500-μM 
PFOA-treated SCs versus the control cells. The expres-
sion of p-ERK and ERK did not significantly change 
(Fig. 7a–d).

We further treated SCs with PFOA (500 μM) and a 
p38 MAPK inhibitor (SB203580, 10 μM). After treating 
SCs with 500 μM PFOA for 48 h, the TNFα level in SCs 
increased compared to that in the control cells, but not in 
the spent media. With both 500-μM PFOA and 10-μM 
SB203580 treatment, the TNFα level was lower than that 
in 500-μM PFOA-treated SCs. These results indicate that 
the elevation of TNFα induced by PFOA exposure can 
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be partly blocked by the p38 MAPK inhibitor (Fig. 8), 
whereas the level of TGFβ3 in both SCs and spent media 
did not change (Fig. S3).

Recovery of BTB proteins, TNFα and MAPK signaling 
molecules after PFOA removal

To validate the disruptive effect of PFOA on the BTB, we 
studied the BTB protein expression and TER in SCs after 
PFOA removal. Forty-eight hours after PFOA removal, 
the contents of various claudin-11, connexin-43, and 
N-cadherin were recovered, which were found to decrease 
or increase in cells treated with 400 μM PFOA for 48 h 
(Fig. 9a, b). The junction barriers of the disrupted cells 
were reassembled 24 h after PFOA removal, as evidenced 
by the recovery in TER in 400- and 500-μM PFOA groups 
(Fig. 9c).

TNFα, MAPK signaling molecules, and TGFβ3 lev-
els were detected in the same SC samples. TNFα content 
and its downstream protein p38 MAPK were recovered, 
and their cellular levels 48 h after PFOA removal were sig-
nificantly different compared to those in continued PFOA-
treated cells (Fig. 9d, f). There was a decline in the TNFα 
level in synchronicity with PFOA removal time, while 
TGFβ3 maintained a high level with only a small decrease 
in both the SCs and spent media (Fig. S4).

Discussion

The BTB prevents the entry of harmful endogenous substrates 
and exogenous contaminants, thereby providing a suitable 
environment for spermatogenesis. It is sensitive to a variety 
of environmental toxicants, such as PFOS (Zhang et al. 2008; 
Wan et al. 2014), which has been shown to damage the BTB 
both in vivo and in vitro (Qiu et al. 2013). After its detection 
in human cord blood, PFOA has also been proven to be capa-
ble of traversing the placental barrier (Apelberg et al. 2007). 
Our previous study using gavage administration concluded 
that PFOA accumulation in the mouse testes was dose-
dependent, and 1.25- and 5-mg/kg/d PFOA exposures did not 
cause testis weight loss (Zhang et al. 2014). Here, we chose 
1.25, 5, and 20 mg/kg/d PFOA and found 5- and 20-mg/kg/d 
PFOA exposures disrupted BTB integrity in adult mouse tes-
tes after PFOA exposure, and that impermeable biotin passed 
through the BTB and entered the lumen of tubules, which 
was also supported by TER in vitro study using a PFOA dose 
of above IC50. The effects of PFOA are consistent with that of 
PFOS on rat primary SCs (Wan et al. 2014).

The disruptive effect of PFOA appeared to be mediated 
initially by changes in the expression of TJ-, GJ-, and basal 
ES-associated proteins in the SCs. The TJs are the major 
junction in many types of epithelial and endothelial cells, 
and they create a boundary that defines cell polarity and 
also contributes to the immunological barrier of host ani-
mals (Tsukita et al. 2001). Herein, claudin-11, a TJ protein, 
was down-regulated by PFOA in the testes and SCs, and 
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occludin expression also decreased in the testes. The GJs, 
including connexin-43, facilitate cross talk between various 
junction types to maintain BTB homeostasis through the 
rapid disassembly and reassembly of junctions, which facil-
itates transport of preleptotene spermatocytes across the 
barrier at stage VIII of the epithelial cycle (Li et al. 2009). 
General knockout of connexin-43 in mice can cause peri-
natal death, and SC-specific knockout of connexin-43 can 
result in infertility in male mice by preventing the initiation 
of spermatogenesis (Gunther et al. 2013). Knockdown of 
connexin-43 by RNA interference in SCs has been shown 
to impede the ability of the cell epithelium to reseal the 
TJs disrupted by calcium depletion and bisphenol A treat-
ment (Li et al. 2010). In this study, the expression of con-
nexin-43 was highly suppressed both in vivo and in vitro, 
indicating that compared to claudin-11, connexin-43 may 
be more susceptible to PFOA. Moreover, N-cadherin and 
β-catenin expression reduction in the testes indicated the 
disruption of basal ESs after PFOA exposure. However, in 

PFOA-exposed SCs, N-cadherin levels were elevated, while 
β-catenin and occludin levels remained unaltered. These 
inconsistent in vivo results may be caused by the simpli-
fied environment of the SC culture, which differs from the 
complex animal physiological environment in which BTB 
protein expression is also regulated by germ cell secretion 
factors and hormones such as testosterone. Moreover, there 
are studies reporting that N-cadherin increase may facilitate 
germ cell loss from the epithelium, and similar results have 
been obtained in experiments using adjudin-treated rats 
and androgen suppressed rat testes (Lee et al. 2003; Zhang 
et al. 2005).

TNFα mediates cross talk between Sertoli and germ 
cells, facilitates germ cell movement across the seminifer-
ous epithelium, and perturbs BTB reconstruction by induc-
ing a loss in the steady-state levels of integral membrane 
proteins when it is additionally supplied to animals (Lydka 
et al. 2012; Luo et al. 2013; Xiao et al. 2014). Administra-
tion of TNFα to testes at concentrations comparable to tes-
tis endogenous levels was shown to reversibly disrupt BTB 
integrity (Li et al. 2006). As for TGFβ3, it has been sug-
gested to play a crucial role in regulating Sertoli cell TJs 
reconstruction (Hellani et al. 2000; Mankertz et al. 2000). 
In the present study, PFOA exposure resulted in elevated 
TNFα levels but not TGFβ3 levels in mouse testes, which 
was supported by in vitro studies concluding that PFOA 
induced both TNFα and TGFβ3 expressions in a dose- 
and time-dependent manner. This indicates that TNFα and 
TGFβ3 are probable mediators of PFOA-induced BTB dis-
ruption. The different responses of TGFβ3 levels between 
in vivo and in vitro PFOA exposure experiments may be the 
result of discrepancy between the microenvironment of the 
SCs, with the exact reasons requiring further investigation.

In the testes, three MAPK signaling pathways (p38 
MAPK, JNK, and ERK) have been implicated in the regu-
lation of junction dynamics and are activated by TNFα or 
TGFβ (Booth et al. 2000; Shaw et al. 2001; Coyne et al. 
2002). Moreover, it has been suggested that MAPKs (p38, 
JNK, and ERK) are downstream molecules of cytokines and 
conduct TNFα-induced caspase-mediated apoptosis (Aggar-
wal 2003; Mocellin et al. 2005; Sabio and Davis 2014). A 
recent study demonstrated that PFOS exerts it effects on the 
SCs via p38 MAPK both in vivo and in vitro, and is partly 
blocked by a p38 MAPK inhibitor (Qiu, et al. 2013). Simi-
lar conclusions have been drawn by studies on other toxi-
cants, such as cadmium, which perturbs the BTB dynamic 
through the p38 MAPK signaling pathway (Lui et al. 2003). 
In this study, the p-p38 MAPK/p38 MAPK ratio in mouse 
testes increased after PFOA administration, indicating that 
PFOA induced p38 MAPK signaling. Furthermore, in vitro 
study confirmed that p38 MAPK and p-JNK were activated 
by PFOA treatment in the primary SCs, and p38 MAPK 
was highly up-regulated after 400-μM PFOA exposure 
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without detectable cell cytotoxicity. PFOA removal restored 
the expression of junction proteins, p38 MAPK and TNFα, 
indicating that PFOA-induced BTB damage could be recov-
ered in animals and humans through clearing environmen-
tal PFOA. Interestingly, PFOA-induced TNFα elevation 
was suppressed or partially blocked by the use of a specific 
MAPK inhibitor (SB203580) in SCs, while the levels of 
TNFβ3 were not affected in SCs or spent media.

The relationship between PFOA exposure and sperm 
function is controversial. Some epidemiological studies dis-
covered that PFOA exposure was negatively associated with 
sperm concentration and total sperm count in men (Vested 

et al. 2013), while the correlation between PFOA levels 
and sperm parameters was nonsignificant in other cases 
(Joensen et al. 2009). A recent mouse model study from our 
laboratory supported this relationship, whereby 5-mg/kg/
day PFOA exposure decreased total sperm count and sperm 
motility (Zhang et al. 2014). The integrity of the BTB is cru-
cial for male fertility. Germ cells undergo mitosis and cross 
the BTB at stages VIII–XI of the epithelial cycle to gain 
entry into the adluminal compartment of the seminiferous 
epithelium to facilitate germ cell release (Lie et al. 2009). In 
this study, the BTB disruption could be a potential reason for 
PFOA-induced reproductive dysfunction in adult male mice, 
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thus led to less sperm, fewer mated females, fewer preg-
nant females per male mouse, and decreased offspring litter 
weight. Meanwhile, PFOA is a endocrine-disrupting chemi-
cal that affects the endocrine system at the hormone level, 
such as testicular testosterone via inhibiting 3 beta-hydroxys-
teroid dehydrogenase (3β-HSD) and 17 beta-hydroxysteroid 
dehydrogenase 3 (17β-HSD3) activities (Zhao et al. 2010; 
Dankers et al. 2013). The testosterone reduced after PFOA 
exposure for 28 days, which has been reported in our previ-
ous study, can be another reason for PFOA-induced repro-
ductive dysfunction in adult male mice.

This study confirmed that PFOA exposure disrupted 
BTB integrity and caused immune privilege and harm to 
the reproductive system, resulting in reproductive dys-
function. The TJ-, GJ-, and basal ES-associated proteins 
between SCs may be the target of PFOA. The increased 
TNFα content and activated p38 MAPK signaling pathway 
might be contributors to PFOA-induced BTB damage.
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